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SUMMARY 
In this paper, for a degraded two-colour or binary scene, we show how the image with 
maximum a posteriori (MAP) probability, the MAP estimate, can be evaluated exactly using 
efficient variants of the Ford-Fulkerson algorithm for finding the maximum flow in a certain 
capacitated network. Availability of exact estimates allows an assessment of the per- 
formance of simulated annealing and of MAP estimation itself in this restricted setting. 
Unfortunately, the simple network flow algorithm does not extend in any obvious way to 
multicolour scenes. However, the results of experiments on two-colour images suggest that, 
in general, simulated annealing, according to practicable 'temperature' schedules, can 
produce poor approximations to the MAP estimate to which it converges. 

Keywords: BAYESIAN METHODS; CAPACITATED NETWORKS; FORD-FULKERSON ALGORITHM; 
IMAGE PROCESSING; ITERATED CONDITIONAL MODES; MARKOV RANDOM FIELDS; 
MAXIMUM A POSTERIORI ESTIMATION; SIMULATED ANNEALING 

1. INTRODUCTION 
There has been considerable interest in Bayesian methods for image analysis: see, for 
example, Geman and Geman (1984) and Besag (1986). In this paper, we show for a 
degraded binary image how the maximum a posteriori (MAP) estimate of the true 
scene can be found exactly. This allows limited assessment of MAP estimation and 
simulated annealing approximations to it. We also include comparisons with the 
method of iterated conditional modes (ICM); see Besag (1986). 

With xi denoting the category or value of pixel i in the image x = (xl, . . ., xj, 
a Bayesian formulation specifies an a priori distribution p(x) over all allowable 
images. Usually, p(x) is taken to be a locally dependent Markov random field (MRF), 
a convenient model for quantifying the belief that the unknown true scene x* consists 
of, for example, large homogeneous patches, or smoothly varying grey levels which 
occasionally change level discontinuously. With y = (Yi, . . . , yY) denoting the 
observed records of x*, the likelihood l(y ix) of any image x is combined with p(x), 
in accordance with Bayes's theorem, to form an a posteriori distribution p(xl y) oc 
1(y Ix)p(x). The MAP estimate of x* is that image x which maximizes p(xl y). 

However, direct calculation of x is in general computationally prohibitive and 
therefore, as an approximation, Geman and Geman (1984) have proposed the use of 
simulated annealing, a stochastic relaxation algorithm which, for an appropriate 
'temperature' schedule, converges to x. In the special case of binary images, Greig 
et al. (1986) indicated how x can be found exactly. Very limited experimentation then 
suggested that simulated annealing can produce poor approximations, with x tending 
to be smoother than the annealing approximation to it. 
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In Section 2, MAP estimation for binary images is reformulated as a minimum cut 
problem in a certain capacitated network, and the classic Ford-Fulkerson algorithm 
can then be used to find x exactly. In Section 3, the results of extensive experimen- 
tation are reported. A much faster version of the Ford-Fulkerson algorithm, which 
exploits the local connectedness of the associated image network, is described in 
Section 4. 

2. EXACT MAXIMUM A POSTERIORI ESTIMATION FOR BINARY IMAGES 

In this Section, we present details of a network reformulation of the MAP esti- 
mation problem for binary images. Each pixel is to be classified into one of two 
unordered colours or categories, which we call white and black and code as xi = 0 
and xi = I respectively. Following Besag (1986), we adopt the following assumptions. 

The records yl, . . . , y,, are conditionally independent given x, and each has known 
conditional density function f(yilxi), dependent on x only through xi. Thus, the 
likelihood function for x may be written 

n n 

4(yIx) = Hf(yIxi) = Hf(yiI)X'f(yiI0)1x' 
i=l i=1 

The prior distribution p(x) is modelled as a pairwise interaction MRF of the form 

p(x) oc exp - E E fij {xixj + (1 - xi) (l xj- 
-2i1j=1 

where fl,i = 0 and flj = fBji > 0; in the strict inequality, we call i and j neighbours. 
Such a distribution is a special case of the general pairwise interaction MRF in 
equation (9) of Besag (1986); in fact, the results of this paper hold for any binary 
pairwise MRF provided that, in Besag's (1986) notation, Gij(xi, xj) is non-negative 
for xi = xj and non-positive otherwise. If flij = fi, if i and j are neighbours, and 
flij = 0 otherwise, then p(x) oc exp(,Bv), where v is the number of neighbour pairs 
with like colours. 

Thus, apart from an additive constant, Inp(xl y) can be written as 
n I n n 

L(xly) = Z Aixi + - E E f3,B{xixj + (1 - xi)(I - xj)} 
i=1 i=1 j=1 

where Ai = ln{f( yi j)/f( YiI0)}, a log-likelihood ratio at pixel i. The MAP estimate is 
that image x which maximizes L. There are 2n possible values of L and n may be of 
the order 256 x 256, making direct search for x infeasible. Fortunately, there are 
efficient algorithms for maximizing L, which we now describe. 

Consider a capacitated network comprising n + 2 vertices, being a source s, a sink 
t and the n pixels. There is a directed edge (s, i) from s to pixel i with capacity cj = Ai4 
if Ai > 0; otherwise, there is a directed edge (i, t) from i to t with capacity ci, = -Ai. 
There is an undirected edge (i, j) between two internal vertices (pixels) i and j with 
capacity cij = flij if the corresponding pixels are neighbours. 

For any binary image x = (xl, . . .,xXn) let B = {s} u {i: xi = I} and W= 
{i: xi = 0} u {t} define a two-set partition of the network vertices and put 

C(x) = E E Ckl. 
keB IeW 
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The set of edges with a vertex in B and a vertex in W is called a cut and C(x) is called 
the capacity of the cut. 

It is readily seen that C(x) may be written 
n n I n n 

C(x) = E xi max(O, -Ai) + (I - xi)max(O, Ai) + 2 i=Z j=1 
j 2- 

which differs from - L(xI y) by a term which does not depend on x; see also Picard 
and Ratliff (1975). Moreover, as Ford and Fulkerson (1962) show, the minimum of 
C(x) is the maximum flow through the network from source to sink subject to the edge 
capacities, and they give an efficient algorithm for solving this problem. A corre- 
sponding cut is called a minimum cut. Thus, maximizing L(xI y) is equivalent to 
finding the minimum cut in the network: in the MAP estimate pixels are black if they 
are on the source side of the minimum cut and white otherwise. 

3. SOME NUMERICAL COMPARISONS BETWEEN EXACT MAXIMUM 
A POSTERIORI ESTIMATION, SIMULATED ANNEALING AND 

ITERATED CONDITIONAL MODES 

Two synthetic binary scenes were used in our experiments and are displayed in 
Fig. 4a of Besag (1986) and Fig. 1(a). Different methods were applied to records 
created by corrupting the synthetic scenes with random noise from known distri- 
butions and experiments were replicated using independent realizations from these 
same noise distributions. The simple prior distribution p(x) Gc exp(,Bv) was used 
throughout, where v denotes the number of neighbour pairs with like colours for the 
neighbourhood system comprising the eight adjacencies of each pixel, save for 
the obvious boundary modifications. The effect of varying ,B was investigated and 
different annealing schedules were compared. In this study ,B was held constant 
throughout the eight iterations used in each application of ICM. 

Records for the first image were created by adding independent Gaussian noise 
with variance 0.9105 to the 0-1 version of the 88 x 100 white-and-black scene 
displayed in Fig. 4a of Besag (1986). This leads to a 30% expected misclassification 
rate for the maximum likelihood classifier. The estimators studied were applied to 
each of five replicates of records for five values of ,B. The results are summarized in 
Table I and will be discussed in detail here. 

Records for the second image were created by applying a binary channel with 25% 
error rate to the 64 x 64 white-and-black scene in Fig. 1(a), leading to a 25% 
expected misclassification rate for the maximum likelihood classifier; an example is 
displayed in Fig. 1(b). The estimators studied were applied to each of five replicates 
of records for three values of ,B. The results are summarized in Table 2, and some of 
the corresponding image estimates are displayed in Fig. 1. 

For each ,B and for each estimator considered, the replicate mean and standard 
deviation of the misclassification rate are given in the upper sections of Tables I and 
2. For any replicate, consider the deviation of log-posterior probability of an estimate 
from the log-posterior probability of the corresponding MAP estimate. Replicate 
means and standard deviations for these log-posterior deviations are given in the 
lower sections of Tables I and 2, except for MAP estimation where because of the 
omitted additive constant only the replicate standard deviations are comparable. 
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(a) (b) 

(c) (d) (e) 

(f ) (g) (h) 

(i) (i) (k) 
Fig. 1. (a) True 64 x 64 binary scene; (b) true scene corrupted by a binary channel with 25% error 
rate; (c) exact MAP estimate (/3 = 0.3); (d) simulated annealing estimate with geometric schedule Apk-I 
(k = 1, . . . , K), with A = 2/ln2, p = 0.99 and K = 565 (/B = 0.3); (e) ICM estimate (/B = 0.3); 
(f) exact MAP estimate (/3 = 0.7); (g) simulated annealing estimate with geometric schedule Apk-I 
(k = 1, . . . , K), with A = 2/ln 2, p = 0.99 and K = 565 (/3 = 0.7); (h) ICM estimate (/3 = 0.7); 
(i) exact MAP estimate (/3 = 1.1); (j) simulated annealing estimate with geometric schedule AApk-I 

(k = 1, . . , K), with A = 2/ln 2, p = 0.99 and K = 565 (/3 = 1.1); (k) ICM estimate (/3 = 1.1) 
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TABLE 1 
Comparison of MAP estimation, simulated annealing and ICM for various values of /B based on five 
replications of Gaussian noise superimposed on the 88 x 100 true scene depicted in Fig. 4a of Besag 

(1986)t 

MAP Simulated annealing ICM 
Logarithmic Geometric 

C2 2 4 p 095 0.99 0.995 
K 5000 750 5000 K 112 565 1131 

Misclassification rate 
0.0 30.2 - - 30.2 

0.9 0.9 
0.3 5.5 6.1 6.3 8.1 5.7 5.6 5.4 7.6 

0.5 0.3 0.4 0.5 0.5 0.5 0.6 0.7 
0.5 6.7 6.0 5.8 7.0 5.6 5.6 5.8 6.4 

0.8 0.8 0.9 0.6 0.3 0.8 0.8 0.3 
0.7 9.5 7.7 7.3 8.5 6.6 7.1 7.7 7.0 

1.3 0.2 0.4 0.6 0.4 0.8 0.5 0.4 
0.9 16.8 9.7 9.5 11.4 8.0 9.7 9.2 7.7 

3.3 1.4 1.3 0.7 0.7 0.6 1.0 0.5 
1.1 27.1 12.2 11.7 14.2 9.5 10.8 12.1 8.3 

2.6 1.1 0.9 1.4 0.4 0.2 1.0 0.4 

Log-posterior probability deviation 
0.0 

40- 40t 
0.3 47 86 290 4 2 1 75 

66t 5 10 22 2 2 0 14 
0.5 21 33 100 25 10 5 153 

731 3 5 16 15 5 3 11 
0.7 39 55 68 69 29 21 271 

79t 20 21 20 21 11 12 22 
0.9 91 130 83 158 79 95 452 

59t 40 41 31 34 23 46 81 
1.1 190 221 171 335 224 200 736 

53t 41 52 53 58 45 48 96 

tEach entry pair comprises a replicate mean (upper number) and a replicate standard deviation (lower number) of 
percentage misclassification rate or of log-posterior probability deviation from corresponding MAP estimate values. 
Standard deviation of log-posterior probabilities for MAP estimates. 

For simulated annealing, logarithmic schedules of the form C/ln(1 + k) and 
geometric schedules of the form Apk-l (k - 1, . . . , K) were used for both images. 
The value A = 2/ln 2 was used in every geometric schedule for both experiments, 
giving the same starting temperature as a logarithmic schedule with C = 2. For 
each geometric schedule, K was chosen so that the final temperature was just less 
than 0.01. 

Geometric schedules are often used in applications of simulated annealing to solve 
general complex optimization problems; see, for example, Kirkpatrick et al. (1983). 
An obvious advantage of geometric schedules over logarithmic schedules is that 
temperatures close to zero can be reached from a high starting temperature in 
considerably fewer iterations. However, in theory, a geometric schedule is too fast and 
there is the risk that a local maximum may be reached from which the annealing 
algorithm cannot escape. 
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TABLE 2 

Comparison of MAP estimation, simulated annealing and ICM for various values of ,B based on five 
replications of binary noise applied to the 64 x 64 true scene depicted in Fig. 1 (a)t 

,B MAP Simulated annealing ICM 
Logarithmic Geometric 
C 2 p 0.95 0.99 0.995 
K 750 K 112 565 1131 

Misclassification rate 
0.0 24.8 - 24.8 

0.5 - 0.5 
0.3 5.2 6.6 5.3 5.3 5.4 6.9 

0.5 0.7 1.0 0.6 0.8 1.0 
0.7 9.6 7.9 7.2 7.2 7.2 6.4 

1.6 0.4 0.5 0.3 0.7 0.8 
1.1 22.8 10.4 9.1 10.6 11.1 6.3 

0.0 1.4 0.8 1.5 1.4 0.8 

Log-posterior probability deviation 
0.0 - - 

0 - - 0t 
0.3 39 3 1 1 19 

23$ 6 2 1 0.45 6 
0.7 20 31 17 16 94 

39$ 12 21 8 9 35 
1.1 59 123 63 55 281 

46$ 30 50 32 29 98 

tEach entry pair comprises a replicate mean (upper number) and a replicate standard deviation (lower number) of 
percentage misclassification rate or of log-posterior probability deviation from corresponding MAP estimate values. 
$Standard deviation of log-posterior probabilities for MAP estimates. 

We now discuss the results in Tables 1 and 2; as the general pattern is similar for 
both images, we focus attention mainly on Table 1, referring to Table 2 only when 
differences arise. 

Mean misclassification rate is generally a U-shaped function of , for all estimators: 
for small values of / estimators tend to undersmooth, whereas for large values of ,B 
they tend to oversmooth. Rates increase with /B most rapidly for MAP estimation and 
least rapidly for ICM, whereas the increase for simulated annealing is intermediate. 
Thus, MAP estimation is very sensitive to changes in the specification of the prior, 
whereas ICM is generally robust to such changes. Rates for simulated annealing 
underestimate those for MAP, particularly for higher values of ,B. As we would expect, 
rates for geometric schedules tend to increase with p towards the rate for the corre- 
sponding MAP estimate. 

The standard deviation of the misclassification rate shows little variation for 
simulated annealing and ICM, though it tends to be greatest for large values of /3. 
However, the standard deviation for MAP estimation increases, then decreases, with 
increasing /3 because, for large ,B, the MAP estimate tends to be one colour. 

From Table 1, we see that mean log-posterior probability deviation increases with 
/3 for both ICM and for the three geometric annealing estimates but is U shaped for 
the three logarithmic annealing estimates. The geometric schedules give results 4that 
are very close to the MAP estimates for ,B between 0.3 and 0.5 and are better than the 
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corresponding logarithmic schedules, presumably because in this range there is less 
chance of becoming trapped in a local maximum of p(xl y) than for larger values of 
,B. However, for large values of , the opposite appears to be the case, suggesting that 
in this range the geometric decrease is too fast. These observations are supported by 
the corresponding increase in standard deviation of log-posterior deviation and are 
related to results of experiments reported to us by Ripley (1988) which indicate that, 
for the larger values of , considered, geometric schedules produce essentially different 
restorations according to which seed is used to initiate the annealing algorithm. Thus, 
the opportunity for the simulated annealing algorithm to become trapped in a local 
maximum ofp(xl y) increases with increasing ,B especially if the temperature is allowed 
to decrease too rapidly. 

The importance of the rate of decrease in temperature is illustrated by the geometric 
schedules where mean log-posterior probability deviation decreases with increasing p. 
The results for the logarithmic schedules indicate the influence of starting tem- 
perature. Thus, for large ,8 many iterations of a slow schedule starting at a high 
temperature will be required to produce a good simulated annealing approximation 
to an MAP estimate, whereas for small / fewer iterations of a faster schedule starting 
at lower temperature should be sufficient. 

We close this section with a few comments on MAP estimation itself. Our results 
indicate that exact MAP estimation can be extremely sensitive to specification of the 
prior distribution. Thus, in image restoration and classification, for example, we have 
seen that such misspecification can lead to drastic oversmoothing and misclassifi- 
cation. However, there may be other contexts, such as boundary detection, where 
MAP estimation is the preferred method; see, for example, Geman et al. (1988). 

4. MORE EFFICIENT VARIANT OF THE FORD-FULKERSON ALGORITHM 

The first set of experiments described in Section 3 is based on an image of size 
88 x 100 and, for definiteness, we now consider ,B = 3. On an Amdahl 470 com- 
puter, the basic algorithm required 3000 s of central processor unit (CPU) time to find 
the MAP estimate. However, a variant of the basic algorithm has reduced this to 250 s. 

The variant is as follows: partition the image into connected subimages and then 
calculate the MAP estimate for each subimage separately. This can be interpreted as 
finding the maximum flow through the network, but under the imposed constraints 
that no flow is allowed across subimage boundaries. 

At the next stage, we relax some of the constraints that no flow is allowed across 
subimage boundaries. Corresponding subimages are thus amalgamated to form a new 
set of larger subimages and the MAP estimate for each of these is then obtained. This 
procedure continues until, at the last stage, we are left with the MAP estimate of the 
complete image. 

To achieve the twelvefold reduction in CPU time mentioned, the 88 x 100 image 
was first partitioned into a 16 x 16 array of roughly equal-sized rectangular subimages. 
Once the individual MAP estimates had been obtained, neighbouring subimages were 
amalgamated in fours to leave a new 8 x 8 array of subimages. This procedure was 
continued until the MAP estimate for the complete image was obtained. 

This choice of partitioning is unlikely to be optimal, but compared with the 
unpartitioned version any sensible choice of partition will lead to a substantial 
reduction in CPU time. 
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5. DISCUSSION 

This paper has described a method for exact MAP estimation of binary images. In 
this simple case the results can be compared directly with those using simulated 
annealing, and the efficacy of that method in producing MAP estimates can be 
assessed. Our results indicate that simulated annealing, applied with practicable 
schedules, does not necessarily produce a good approximation to an MAP estimate. 
However, our experimental results suggest that good approximations are more likely 
for smaller values of the parameter ,B, and in such cases geometric schedules out- 
perform logarithmic schedules. An informal explanation of this behaviour is that the 
amount of smoothing required to obtain an MAP estimate increases with # and, as 
Besag (1986), p. 298, has conjectured, the simulated annealing algorithm then appears 
to become 'increasingly bogged down by local maxima' resulting in undersmooth 
approximations. 

Since an exact MAP estimate is now available, some insights into its value 
as a method of image restoration can be obtained. Our results emphasize the 
crucial importance of the assumed prior distribution; in particular, we demonstrate 
that, as # increases, the global properties of the prior distribution very rapidly 
dominate the likelihood contribution to the posterior distribution. We conjecture that 
corresponding multicolour estimates will behave similarly. 

Assuming the model of Section 2, obtaining a binary MAP estimate has been 
shown to be equivalent to optimizing a particular quadratic function of 0-1 variables; 
it is this problem which is amenable to a network flow solution. Any attempt 
to incorporate line sites, as in Geman and Geman (1984), or to preserve certain 
global aspects of the true scene, considered by Green (1986), will in general 
render the network method inapplicable. Similarly, the multicolour problem 
cannot be directly dealt with by this method: though it can be treated as a gener- 
alized minimum cut problem, there seems to be no corresponding network 
formulation. 
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