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Abstract—A method is presented for automated segmentation of
vessels in two-dimensional color images of the retina. This method
can be used in computer analyses of retinal images, e.g., in au-
tomated screening for diabetic retinopathy. The system is based
on extraction of image ridges, which coincide approximately with
vessel centerlines. The ridges are used to compose primitives in the
form of line elements. With the line elements an image is parti-
tioned into patches by assigning each image pixel to the closest line
element. Every line element constitutes a local coordinate frame
for its corresponding patch. For every pixel, feature vectors are
computed that make use of properties of the patches and the line
elements. The feature vectors are classified using a NN-classi-
fier and sequential forward feature selection. The algorithm was
tested on a database consisting of 40 manually labeled images. The
method achieves an area under the receiver operating character-
istic curve of 0.952. The method is compared with two recently pub-
lished rule-based methods of Hoover et al. [1] and Jiang et al. [2].
The results show that our method is significantly better than the
two rule-based methods ( 0 01). The accuracy of our method
is 0.944 versus 0.947 for a second observer.

Index Terms—Classification, convex sets, feature selection,
fundus, image primitives, retina, ridges, vessel segmentation.

I. INTRODUCTION

ASSESSMENT of the characteristics of vessels plays an
important role in a variety of medical diagnoses. For these

tasks measurements are needed of e.g., vessel width, color,
reflectivity, tortuosity, abnormal branching, or the occurrence
of vessels of a certain width. When the number of vessels in an
image is large, or when a large number of images is acquired,
manual delineation of the vessels becomes tedious or even
impossible.

The focus of this paper is on the automated segmentation of
vessels in color images of the retina. These images, also known
as fundus images, are acquired by making photographs of the
back of the eye. We are interested in vessel segmentation for
screening of diabetic retinopathy. Diabetes is a disease that af-
fects about 5.5% of the population worldwide, a number that can
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be expected to increase significantly in the coming years. About
10% of all diabetic patients have diabetic retinopathy, which is
the primary cause of blindness in the Western World. Since this
type of blindness can be prevented with treatment at an early
stage, the WHO advises yearly ocular screening of patients. Au-
tomation will facilitate this screening [3].

Knowledge about the location of the vessels can aid in
screening of diabetic retinopathy, e.g., to reduce the number of
false positives in the detection of microaneurysms [4]–[6], to
serve as a means for registration of images taken at different
time instants or at different locations of the retina [7], or to find
the location of the optic disc and the fovea.

Previous methods for vessel segmentation in images of
the retina can be divided into two groups. The first group
consists of rule-based methods and comprises vessel tracking
[8]–[11], matched filter responses [1], [12], [13], grouping of
edge pixels [14], model based locally adaptive thresholding
[2], topology adaptive snakes [15] and morphology-based
techniques [16]–[18]. The second group consists of supervised
methods, which require manually labeled images for training.
To the best of our knowledge, the only published method in this
category is the neural network scheme for pixel classification
by Sinthanayothin et al. [19], [20]. Our method belongs to the
last category.

In our opinion, a pixel representation is not optimal for vessel
structure. Therefore, our approach is based on the intrinsic prop-
erty that vessels are elongated structures. This observation leads
to a primitive-based method, which we refer to as PBM. Our al-
gorithm uses image primitives formed from image ridges that
are grouped into sets that approximate straight line elements.
The sets are used for two purposes. First, features are computed
which together with a classifier give a probability that the line
element is part of a vessel. Second, the sets divide the image
into patches by assigning every pixel of the image to its nearest
primitive. Within each patch, the line element defines a local co-
ordinate frame in which local features can be extracted for every
pixel. The probability that the line element is part of a vessel is
one of these features. The features are used to classify the pixels
in the patch into vessel and nonvessel.

Many of the published methods have not been evaluated on
large datasets or fail to give good results for large numbers of
images as encountered in a screening process. In [9] and [19],
evaluation is done on vessel segments and bifurcations. Only
in [1] and [2] is an evaluation on complete manually labeled
images presented.

We have constructed a database of manually labeled images
for training and evaluation of our method. The database consists
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of 40 images taken from a screening programme for diabetic
retinopathy in the Netherlands. We compare our method with
two rule-based methods. The first one is the method of Hoover
et al. [1], the second one the method of Jiang et al. [2]. Hoover et
al. have collected a database of manually labeled images, which
is publicly available together with the results of their method.
For comparison, our system is evaluated on their database too.

The paper is organized as follows. In Section II, a method for
extracting ridges and line elements is developed. The line ele-
ments are used to subdivide the image into patches. Section III
describes the classifier used and the features that are extracted.
A description of the material used is given in Section IV. Section
V presents the results, which are summarized and discussed in
Section VI.

II. REPRESENTATION OF VESSELS

A. Ridge Detection

Since image ridges are natural indicators of vessels, we start
our analysis with a short overview of ridge detection for two-
dimensional gray value images. For a more extensive discussion
on this subject, see [21] and [22]. The ridge detection method
used in this paper is described in full detail in [22]. Because
the green channel of color fundus images formatted as an RGB

image gives the highest contrast between vessel and background
[1], this channel is used for extraction of the image ridges.

Ridges are defined as points where the image has an ex-
tremum in the direction of the largest surface curvature. Stated
otherwise, we search for the points in the image , with

, where the first derivative of the intensity in the
direction of the largest surface curvature changes sign.

The direction of largest surface curvature is the eigenvector
of the matrix of second order derivatives of the image cor-

responding to the largest absolute eigenvalue . This matrix is
referred to as the Hessian matrix . The sign of determines
whether a local minimum or a local maximum
is found.

Because taking derivatives of discrete images is an ill-posed
operation, they are taken at a scale using the Gaussian scale-
space technique [23], [24]. The main idea is that the image
derivatives can be taken by convolving the image with deriva-
tives of a Gaussian

(1)

where is the image coordinate with respect to which the
derivative is taken. Mixed and higher order derivatives are
computed by taking mixed and higher order derivatives of the
Gaussian kernel.

It is now possible to define a scalar field over the
image that takes value for ridges of local minima, 1 for
ridges of local maxima and 0 elsewhere as follows:

(2)

Fig. 1. (a) Green channel of a fundus image obtained from a digital fundus
camera. The diameter of the FOV is 540 pixels. (b) The local minima ridges of
(a), � = 2:0 pixel. A subset of the ridges coincide with the vessels.

where the gradient operator is defined as
and is the largest eigenvalue by absolute value of

. In (2), and are evaluated at . The pa-
rameter is the spatial accuracy with which the point-sets are
detected. In the continuous case, the limit is taken, but
in the discrete pixel case pixel is a natural choice. The
locations at which the gradients are evaluated are in general not
on a grid point and linear interpolation is used to obtain the gra-
dient values.

Fig. 1 shows an example of ridge detection in a fundus image.
Since the vessels are dark structures, only local minima ridges
are shown. In fluorescein angiography, where the vessels are the
brighter structures, the local maxima ridges should be used.

B. Affine Convex Sets: Grouping Ridge Pixels

The next step in forming primitives for the vessels is a
grouping of ridge pixels which belong to the same ridge. The
aim is to obtain primitives which represent approximately
straight line elements.

The grouping method is a simple region growing algorithm
which compares an already grouped ridge pixel with ungrouped
pixels in a neighborhood of radius , where the subscript “ ”
stands for connectivity. If no grouped pixel is available, a new
one is selected randomly as seed from the remaining ungrouped
ridge pixels. The comparison between the grouped and a candi-
date pixel within the neighborhood is based on two conditions:
1) The eigenvector directions of the ridge pixels should be sim-
ilar and 2) If condition 1) is met, the pixels should be on the
same ridge (and not on parallel ridges). The first condition can
be checked by taking the scalar product of the eigenvectors at
the location of the pixels. If the pixels have similar orientation
the scalar product will be close to 1. The second condition can
be checked by computing the unit-length normalized vector
between the locations of the two pixels under consideration and
taking the vector product between and of the grouped pixel.
If the pixels are on the same segment, the vector product will be
close to 1.

Mathematically, we check the following inequalities:

(3)

(4)

(5)
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Fig. 2. The dark curved lines are two ridges. The diameter of the disk is � . v
is the eigenvector belonging to a grouped pixel, v and v are the eigenvectors
of still ungrouped pixels. The vectors r and r are unit vectors pointing from
the grouped pixels to the ungrouped pixels. The pixel that belongs to the same
ridge will be added to the group, because it satisfies the conditions in (3)–(5).
The pixel on the parallel ridge does not satisfy condition (5) and will not be
grouped.

Fig. 3. (a) The convex sets of the ridges of Fig. 1(b). Every grouped set has its
own color. (b) Blow up of (a). Note that the number of ridge pixels is equal to
the number of ridge pixels in Fig. 1.

where the subscript “ ” stands for grouped, “ ” for ungrouped,
“ ” for orientation and “ ” for parallelism. The ’s determine
the measure for similarity, where and

.

We refer to these sets of coordinates as affine convex
sets: convex because they approximate straight line elements
and affine because of the geodesic convexity instead of straight
line (Euclidean) convexity.

If the ridge detection is not perfect, can overcome the dis-
continuity caused by gaps in the ridges. The parameter con-
trols the amount of curvature between two pixels. If it is set close
to zero, highly curved convex sets are formed. If it is set close to
one, straighter convex sets are obtained. The parameter pre-
vents the grouping process to jump to parallel ridges. A value
close to one is recommended. In this paper, pixels,

, and is used. Fig. 2 illustrates the con-
struction of the affine convex sets. In Fig. 3, the convex sets of
the ridges of Fig. 1(b) are shown.

The th element in convex set number , consisting of
points, will be denoted by . The vector

is the location of the th element in the set. The subscript
is omitted when no particular convex set is referred to. For

every point in a convex set there is a corresponding direction
, the direction in which the ridge is detected.

Fig. 4. Convex set regions of the convex sets of Fig. 3(a).

C. Convex Set Regions

The image can now be partitioned into patches based on the
convex sets. Every pixel is assigned to the convex set to which it
is closest. Fig. 4 shows the result of this operation on the convex
sets of Fig. 3(a). The patches are referred to as convex set regions
(CSRs).

A fitted straight line through a convex set can be used as the
main axis of a local coordinate frame for the pixels in the cor-
responding CSR.

III. FEATURES AND CLASSIFIERS

The goal of this work is to classify every pixel in an image
as vessel or nonvessel. For this purpose labeled examples or
training sets, features and a classifier are needed.

From the training sets feature vectors are constructed that can
be labeled as vessel or nonvessel, so every feature vector belongs
to one of two classes. The idea is that feature vectors from a
particular class cluster together in the feature space and that a
classifier can be designed that determines a decision boundary
between the different classes. After the training, a nonlabeled
feature vector can be classified by determining on which side
of the decision boundary it is situated. With some classifiers it
is possible to approximate the chance, given the features, that a
pixel is vessel or not. This is called soft classification.

A. Classification and Performance

In initial experiments, three classifiers have been compared, a
NN-classifier, a linear classifier and a quadratic classifier [25].

Performance of the NN-classifier was superior for all experi-
ments, so this classifier has been selected. We use the optimized
implementation for NN-classifiers that is made available by
Arya et al. [26].

Using neighbors of which are labeled as vessel the a pos-
teriori probability for being part of a vessel is approximated as

(6)

This converges to the true probability in the limit of an infinite
number of examples [25].

The performance of the system is measured with receiver op-
erating characteristic (ROC) curves [27]. An ROC curve plots
the fraction of pixels that is falsely classified as vessel against
the fraction that is correctly classified as vessel. The fractions
are determined by setting a threshold on the posterior proba-
bility. The closer a curve approaches the top left corner, the
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better the performance of the system. A single measure to quan-
tify this behavior is the area under the curve, , which is 1 for
a perfect system. A system that makes random classifications
has an ROC curve that is a straight line through the origin with
slope 1 and .

B. Feature Selection

In the following sections, many features will be defined and
it is not known beforehand which ones will give good classifi-
cation results and which ones will not. Therefore, feature selec-
tion is applied. The scheme used in this paper is the sequential
forward selection method [28]. This algorithm starts with a null
feature set and, for each step, the best feature that satisfies some
criterion function is included with the current feature set. In this
paper, is taken as the criterion function. After all features
have been included, the set that gives the best performance is
chosen.

C. Convex Sets Features

In Fig. 3, the convex sets that are part of a vessel can be dis-
tinguished from the nonvessels by their local appearance. For
that reason, features based on the profiles perpendicular to the
convex sets seem to be a good choice. To extract profile informa-
tion, a profile is sampled for every point in a convex set from
the image’s green plane in the direction of the vector with

as midpoint. The obtained profiles are averaged and the
mean profile , with , is taken as the pro-
file of the convex set. The averaging operation performs some
smoothing, so blurring of the profile is not considered. Features
that are extracted from the profile are as follows.

1) The height of the profile: .
2) The width of the profile defined as the distance between

the strongest right and left edge of the profile:
, with the first derivative

of the profile. is defined similar for ).
3) The height divided by the width: .
4) The edge strength, defined as: .
5) The edge strength divided by the width: .
6) The edge height: .
7) The height minus the edge height: .
8) The height divided by the edge height: .
There are also features extracted that are not profile related,

but might give useful information. The following are computed.

9) The distance between the first and last point of a convex
set: .

10) The length of a convex set: .
11) The curvature of a convex set, approximated by:

.
12) A rectangular image patch of size by is sam-

pled in the green plane around a convex set. The mean
for this patch is computed.

13) The standard deviation for the green patch.
14) The mean value of the green plane at the locations of the

convex set divided by the the mean value of the red plane.
15) At different scales the mean value of at the loca-

tions of the convex set: ,
this is a measure of ridge strength (see Section II-A).

D. CSR Pixel Features

Fitting a straight line through a convex set, a local coordi-
nate system can be established for every CSR. For the origin of
the coordinate the center of mass of the convex set is chosen.
The first axis is along the direction of the fitted line, the second
axis is perpendicular to the first axis and its direction is chosen
so that a right hand oriented coordinate system is established.
The features computed for the pixels in the CSR can be subdi-
vided into features that take no information of the convex set
into account [number 1)–3) in the list below], features that take
convex set information into account [features 4)–9) below] and
features that exploit the use of the local coordinate system [fea-
tures 10)–12)].

1) The value of the red plane of the image at the pixel lo-
cation: .

2) The value of the green plane of the image at the pixel
location: .

3) The ratio of the green values and red values of the pixel:
.

4) The chance that the corresponding convex set belongs to
a vessel: .

5) The distance between the pixel and the closest point on
the convex set: .

6) The difference in the red values of the pixel and the
closest point on the convex set: .

7) The ratio of the red values of the pixel and the closest
point on the convex set: .

8) The difference in the green values of the pixel and the
closest point on the convex set: .

9) The ratio of the green values of the pixel and the closest
point on the convex set: .

10) The coordinate of the pixel with respect to the first axis:
.

11) The coordinate of the pixel with respect to the second
axis: .

12) , and at different scales . (Note
that these are the number of scales 4 features).

Not all of the features defined in this and the previous sub-
section are independent, but this is not a concern for the NN-
classifier used here.

In the databases we use, the blue channel is often empty or
contains a lot of noise. Therefore, no features are extracted from
that channel.

IV. MATERIAL

Two databases with images are used. The first one is ob-
tained from a screening programme in the Netherlands and will
be referred to as the Utrecht database. From this database 40
images are taken, containing 7 images with pathology (exu-
dates, hemors, pigment epithelium changes). The images are
captured in digital form from a Canon CR5 nonmydriatic 3CCD
camera at 45 field of view. The images are of size 768 584
pixels, 8 bits per color channel and have a field of view (FOV)
of approximately 540 pixels in diameter. The images are in
compressed JPEG-format, which is unfortunate for image pro-
cessing but is commonly used in screening practice. Fig. 1(a)
shows an example of the green channel of such a fundus image.
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The images were manually segmented by three observers, a
computer science student, the third and the first author.1 They
were asked to mark all pixels for which they were for at least
70% certain that they were vessel. The observers were trained
by an ophthalmologist, the second author.

The 40 images have been divided into a train and test set,
each containing 20 images. The images in the train set were seg-
mented by the first (14 images) and second observer (6 images).
The images in the test set were segmented twice, resulting in a
set A and a set B. The images in set A were labeled by the first
(13 images) and second observer (7 images). Set B was seg-
mented by the last observer.

The train set contains 3 images with pathology. Performance
is computed with respect to the test set (the segmentations of
set A are used as ground truth). The observers of set A marked
577 649 pixels as vessel and 3 960 494 as background (12.7%
vessel), for set B these numbers are 556 532 and 3 981 611, re-
spectively (12.3% vessel).

The second database has been collected by Hoover et al. [1]
and consists of 19 images. This database will be referred to as
the Hoover database. The Hoover images are digitized slides
captured by a TopCon TRV-50 fundus camera at 35 field
of view. The slides were digitized to 700 605 pixels, 8 bits
per color channel. The FOV in the images are approximately
650 550 pixels in diameter. Two observers manually seg-
mented all images. The first observer segmented 615 726 pixels
as vessel and 5 293 034 as background (10.4% vessel), the
second observer marked 879 695 pixels as vessel and 5 029 065
as background (14.9% vessel). Nine images contain pathology.
The first observer segmented far less (small) vessels than the
second observer and there is a large variability between the
observers. Performance is computed with the segmentations of
the first observer as ground truth.

Hoover et al. used the complete image for measuring the per-
formance. Since the dark background outside the FOV is easily
extracted, in this paper all experiments are done on the FOV
only.

We compare the performance of our algorithm to that of
Hoover et al. [1] using their publicly available results. To
compare our system with the method of Jiang et al. [2] we
implemented that method.

V. RESULTS

All experiments for the PBM are carried out with the fol-
lowing settings, which were found after a pilot study.

The ridges in the images are extracted from the green channel
at scale pixel. To obtain approximately straight lines,
the maximum size of the convex sets is set to 25 pixels.

Training sets for the convex sets are constructed by counting
how many of their pixels intersect with the vessel pixels in the
manually labeled ground truth images. If more than 50% of the
pixels in a convex set intersect they are labeled as vessel, else as
nonvessel.

The profile features for the convex sets are computed with a
half profile width , i.e., the profile consists of 31 pixels.

1The images and their manual segmentations are made publicly available at
http://www.isi.uu.nl/Research/Databases/DRIVE/.

To compensate for the lighting variations and to enhance local
contrast, the pixels of every color channel of the images are
locally normalized to zero mean and unit variance

(7)

with

(8)

acting as a local averaging operator. A value of pixels
is used. In [19], a similar filtering is performed with a square
filter.

A. Settings

The ridge measures are extracted from the green channel and
scales and pixels are used.

With these settings a total 18 features per convex set is
extracted. For the training of the classifier, only every fourth
convex set is taken. This reduces computation time and memory
resources.

For the computation of the features for the CSR the fol-
lowing settings are used. In the training phase, the a posteriori
probabilities for the convex sets are computed using (6) in a
leave-one-out fashion, i.e., the convex sets of one image are
classified with a classifier trained on the convex sets of the
other images in the training set.

The derivatives with respect to the local coordinate systems
are taken at scales and , resulting in 27
features. For the training, only every fourth pixel in the and

-directions is used.
The feature selection is also done on a leave-one-out basis.

This is done for every image and the value of all images is
averaged to obtain a criterion upon which it is decided to include
a feature or not.

The NN-classifiers for the classification of the convex sets
and the CSR use .

Because NN-classifiers are sensitive to scaling between dif-
ferent features, in all experiments each feature is normalized
independently to zero mean and unit variance.

B. The Utrecht Database

The convex sets detection on the train set gives 12 648 vessel
segments and 48 838 nonvessel segments (20.6% vessel).

The results of feature selection on the train set are presented
in Table I for the convex sets and in Table II for the CSR. Every
row in the table gives the performance of the best feature that
is added to the feature set (so including the previously selected
features). In the last line, the performance is shown when all
features are included.

Fig. 5 shows the ROC curves for the segmentations obtained
by the PBM and the method of Jiang et al. on the images of the
test set. The performance of the observers of set A versus B is
also plotted, together with the result of thresholding the classi-
fied images at . This is equivalent to a hard classification
in two classes.
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TABLE I
SELECTED FEATURES FOR THE CONVEX SETS. FOR EVERY ADDED FEATURE

THE OBTAINED AREA UNDER THE ROC CURVE IS GIVEN

TABLE II
SELECTED FEATURES FOR THE CONVEX SET REGIONS. FOR EVERY ADDED

FEATURE THE OBTAINED AREA UNDER THE ROC CURVE IS GIVEN

Fig. 6 shows for the PBM the images with the highest and
lowest , the results of hard classification of these images and
the corresponding manually segmented images for the observers
of set A and set B.

In Table III, an overview is given of the results of the dif-
ferent methods. The upper part of the table shows the values.
The value for the method of Jiang et al. is approximated by
adding the points (0, 0) and (1, 1) to the curve. The lower part
of the table lists the accuracies for the different methods.

For comparison, the last row shows the results when all
pixels are segmented as the most likely class, in this case the
background.

Paired -tests on the values for the individual images of the
database, show that the PBM performs significantly better than
Jiang et al. with 0.01. Using the accuracies of each image,
all values in Table III are significantly different from each other
with , except for Jiang et al. versus the most likely
class, where .

A -test for the PBM shows no significant differences when
the results of the images with pathology are compared to those
without pathology.

C. The Hoover Database

Because no independent test set is available for the Hoover
database, leave-one-out experiments are performed, i.e., every
image is classified using the other 18 images as training set.
However, the computation time required for feature selection is

Fig. 5. Results for the Utrecht database. The PBM gives A = 0:952 and the
method of Jiang et al. [2] A = 0:933. Comparing set B to set A, false and true
positive fractions of (0.0275, 0.775) are found. Performing a hard classification
on the results of the PBM gives (0.017, 0.678) for the false and true positive
fractions.

very large and is, therefore, only done once for both the convex
sets and the CSR, using 9 of the 19 images (4 with and 5 without
pathology).

Tables I and II list the features that have been selected. In
the train set 8615 convex sets are vessel, and 57 996 nonvessel
(12.9% vessel).

After the feature selection, the images are segmented in
leave-one-out experiments.

The ROC curves for the PBM and for the methods of
Jiang et al. and Hoover et al. are shown in Fig. 7. The results
of observer 1 versus observer 2 and of hard classification are
plotted too.

Table III shows the values and the accuracies for the dif-
ferent methods. Paired -tests on the values show that the
PBM performs significantly better than the two other methods
and that the method of Jiang et al. is significantly better than
the method of Hoover et al., all with 0.01. For the accu-
racies, the PBM is significantly better than the other methods
(including the second observer) with . The method
of Hoover et al. is significantly better than Jiang et al. and than
classifying every pixel to its most likely class with , but
differs only significantly with the second observer with .
The method by Jiang et al. is not significantly better than clas-
sifying the pixels to the most likely class.

The PBM performs significantly better on the images without
pathology than on those with pathology ( versus

).

VI. DISCUSSION AND CONCLUSION

The results show that the method proposed in this paper (the
PBM) outperforms the previously published rule-based methods
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Fig. 6. First column: Best and worst result of the PBM. The grey value denotes the prior probability of the pixel being vessel (bright for the lower values and
dark for the higher values). Second column: hard classification. Third column: observer from set A. Fourth column: observer from set B.

TABLE III
RESULTS FOR THE DIFFERENT DATABASES AND METHODS. ROWS 1–3 GIVE

THE AREA UNDER THE ROC-CURVES, ROWS 4–8 THE ACCURACY (THE SUM OF

THE NUMBER OF CORRECTLY CLASSIFIED FOREGROUND AND BACKGROUND

PIXELS, DIVIDED BY THE TOTAL NUMBER OF PIXELS)

by Hoover et al. [1] and by Jiang et al. [2]. A possible explana-
tion is that it is very difficult to come up with good rules for
problems where many features interact in a complex manner.
Supervised methods with feature selection like the PBM seem
to be better equipped for these tasks. In the Hoover database,
this is illustrated by the fact that the accuracy of the PBM is
higher than that of an independent second observer. The PBM
is able to adapt to the first observer, who disagrees especially on
the number of small vessels with the second observer.

A disadvantage of supervised methods is the need for (man-
ually) labeled training data. For the Utrecht database it took an
observer 2 hours on average to label a single image.

Figs. 5 and 7 and Table III demonstrate that it is possible to
design a system that approaches the performance of human ob-
servers. It can be noticed from these figures that the second ob-
server does not achieve an accuracy of 1, because the first and
second observer disagree in their manual segmentations. One

Fig. 7. Results for the Hoover database. A = 0:961 for the PBM,
A = 0:930 for the algorithm by Jiang et al. [2] and A = 0:759 for
the algorithm by Hoover et al. [1]. Comparing the second observer to the
first observer, false and true positive fractions of (0.061, 0.903) are found.
Performing a hard classification on the results of the PBM gives (0.019, 0.697)
for the false and true positive fractions.

reason is that due to JPEG-artifacts it is hard to discern vessels
of pixel or subpixel width. Another reason is the subjective de-
cision that the human observers must make regarding pixels at
the border of the vessels. Do they belong to the vessel or not?
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Fig. 8. Results on an image with pathology from the Hoover database.

Asking the observers to rate the probability for such pixels being
vessel would increase the time required for the segmentation
prohibitively.

Two types of errors can be distinguished. The first type is
over- and undersegmentation of the vessels. This is important in
applications where determination of the vessel width is needed.
The second type of error is the missing or erroneous detection
of vessel branches. Suppose for example that two observers
both label a small vessel, but in one of the segmentations the
vessel is slightly shifted so that both vessels do not overlap.
This will degrade accuracy more than if one of the observers
had labeled no vessel at all. Type 2 errors are expected to be
encountered with small vessels mostly. Removing the small
vessels by a morphological opening, the type 1 error for large
vessels can be approximated. The accuracy between first and
second observer increased from 0.947 to 0.964 in the Utrecht
database and from 0.935 to 0.948 in the Hoover database.

A perfect system would yield , which is not reached
by our method. There are a few reasons. First, in all images high
probability for being vessel is found around the boundaries of
the FOV, while there are no vessels; see Fig. 6(a) and (e) for an
example. This is an artifact of the method, introduced by the
blurring that is needed for detecting the ridges of the image.
Second, in some images part of the boundary of the optic disc
is marked as vessel, cf. Fig. 6(a), while a human observer can
clearly discern between the two. This is an indication that the
amount of training data might be insufficient. Third, related to
the last observation, is the appearance of (severe) pathology
of which Fig. 8 gives an example. The method selects with
high probability some vessels between bright areas where there
are clearly no vessels. More training data that includes the
various types of pathology encountered in screening practice
might overcome this problem. No experiments were done to
investigate the influence of the amount of training data. However,
certain types of pathology might be detected and labeled in a
preprocessing step. A fourth reason for imperfect performance

of the method can be the incorrect labeling of the convex
sets in the training sets. Or even worse, no ridge is detected
at the location of a vessel, which can happen for very small
vessels. This can occur because the locations of the ridges are
perturbed by the blurring that is needed for their detection.
For large vessels, the detected ridge pixels are still within the
vessel, but for small vessels they can be a little off. A possible
solution might be to do ridge detection with scale selection,
like in [24]. Another interesting reason for scale selection is
the use of scale as a feature.

For the PBM it takes about 15 min to segment an image in the
Utrecht database on a Pentium-III PC, running at 1.0 GHz with
1-GB memory. Most time is spent in the classification. However,
our implementation is experimental and could be optimized. For
example, Table II shows that for both databases, the most impor-
tant feature is the probability that a convex set is part of a vessel.
It can be expected that for a set with low probability of being
vessel the pixels in its CSR will have low probability. This mea-
sure can be used to speed up the segmentation by not processing
CSR belonging to convex sets with a low chance of being vessel.
In the Utrecht database, we observed that only about 10% of the
convex sets have a probability higher than 0.5. In [2], processing
times of about half a minute are reported. Computation times for
[1] are not available.

In this paper, evaluation has been done using accuracy of hard
classifications and values of soft classifications. Other evalu-
ation measures might be more appropriate, depending on the ap-
plication at hand. For example, if one is interested in examining
the tortuosity of the vessels, the width of the vessels might not be
important, only the centerlines. The measures used do not take
into account the number of branches, the connectedness of the
vessels or the number of branching points, which all might be
relevant in specific applications. Another good evaluation mea-
sure might be the performance of a computer-aided diagnosis
system for retinal images that uses the results of a vessel seg-
mentation algorithm in its analysis.
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